Product pages available in
EN - DE - FR - ES
Steels in the HSLA (High Strength Low Alloy) range are hardened by a combination of precipitation and grain size refining, resulting in high strength with low alloy content. This enhances weldability and choice of coatings, since these steels exhibit neither weld-zone softening nor grain coarsening. These grades are particularly suitable for structural components such as suspension systems, chassis and reinforcement parts.
For their respective yield strength levels, these steels all exhibit excellent cold forming and low-temperature brittle fracture strength (as from grade 320).
The entire range of HSLA steels offers good fatigue strength (suspension arms, strut mounts) and impact strength (longitudinal beams, subframes, reinforcements, etc.).
Their mechanical properties enable the weight of reinforcement and structural components to be reduced.
The HSLA range of products is available in hot and cold rolled grades. The various grades are identified by their yield strength.
Hot rolled HSLA grades are suitable for Class 1 hot-dip galvanised coating in accordance with standard EN 36503 (post-galvanising).
Steels in the HSLA range are suitable for structural components such as suspension systems, reinforcements, subframes, longitudinal beams, chassis components, etc. The mechanical properties of hot-rolled HSLA steels and their excellent cold-forming performance and low-temperature brittle fracture resistance enable cost-effective solutions to be found for many parts and sub-assemblies requiring weight, thickness and size reduction, such as:
Rear subframe in Extragal®-coated HSLA 300
Bumper bracket in Dual Phase 780
Impact absorber in HSLA 300
These cross-references are given for information only. ArcelorMittal grades generally offer more narrowly defined mechanical properties.
The table below summarises the cross-references between the ArcelorMittal product range, European standards and standard VDA 239-100.
Show all |
|
|
|
|
---|---|---|---|---|
ArcelorMittal name | Generic name | Euronorms | VDA 239-100 | ABNT NBR |
CR210LA | CR210LA | |||
CR240LA | CR240LA | HC260LA (+ZE) / HX260LAD (+Z, +ZF, +ZM) | CR240LA (-UC,-EG,-GI,-GA,-ZM) | ARBL-240 / ZAR-230 |
CR270LA | CR270LA | HC300LA (+ZE) / HX300LAD (+Z, +ZF, +ZM) | CR270LA (-UC,-EG,-GI,-GA,-ZM) | ARBL-270 / ZAR-280 |
CR300LA | CR300LA | HC340LA (+ZE) / HX340LAD (+Z, +ZF, +ZM) | CR300LA (-UC,-EG,-GI,-GA,-ZM) | ARBL-300 / ZAR-320 |
CR340LA | CR340LA | HC380LA (+ZE) / HX380LAD (+Z, +ZF, +ZM) | CR340LA (-UC,-EG,-GI,-GA,-ZM) | ARBL-340 / ZAR-345 |
CR380LA | CR380LA | HC420LA(+ZE)/HX420LAD(+Z,+ZF,+ZM) | CR380LA (-UC,-EG,-GI,-GA,-ZM) | ARBL-380 / ZAR-400 |
CR420LA | CR420LA | HC460LA (+ZE) / HX420LAD (+Z, +ZF, +ZM) | CR420LA (-UC,-EG,-GI,-GA,-ZM) | ARBL-420 |
CR460LA | CR460LA | HC500LA(+ZE)/HX500LAD(+Z,+ZF,+ZM) | CR460LA (-UC,-EG,-GI,-ZM) | |
CR500LA | CR500LA | CR500LA (-UC,-EG,-GI,-ZM) | ARBL-500 | |
CR550LA | CR550LA | ARBL-550 / ZAR-550 |
Show all |
|
|
|
|
|
---|---|---|---|---|---|
ArcelorMittal name | Generic name | Euronorms | VDA 239-100 | JFS | ABNT NBR |
HR240LA | HR240LA | JSH370W | LNE230 / LN240 | ||
HR270LA | HR270LA | LNE260 / LNE280 | |||
HR300LA | HR300LA | S315MC/HX340LAD (+Z) | HR300LA (-UNC,-GI,-GA,-ZM) | ||
HR340LA | HR340LA | S355MC/HX380LAD (+Z) | HR340LA (UNC,-GI) | LN360 | |
HR380LA | HR380LA | LNE380 | |||
HR420LA | HR420LA | S420MC/HX460LAD (+Z) | HR420LA (-UNC,-GI) | JSH490R | LNE400 / LNE420 |
HR460LA | HR460LA | S460MC/HX500LAD (+Z) | HR460LA (-UNC,-GI) | LNE460 | |
HR500LA | HR500LA | S500MC | HR500LA (-UNC,-GI) | LNE500 | |
HR550LA | HR550LA | S550MC | HR550LA (-UNC,-GI) | ||
HR600LA | HR600LA | S600MC | HR600LA | ||
HR650LA | HR650LA | S650MC | HR650LA | ||
HR700LA | HR700LA | S700MC | HR700LA (-UNC) |
Uncoated (EN 10268: 2006 + A1: 2013): Steel grade name
Electrogalvanized (EN 10268: 2006 + A1: 2013 + EN 10152: 2017): Steel grade name+ZE
Galvannealed (EN 10346: 2015): Steel grade name+ZF
Extragal® (EN 10346: 2015): Steel grade name+Z
Zagnelis® (EN 10346: 2015): Steel grade name+ZM
Uncoated: Steel grade name-UNC
Electrogalvanized: Steel grade name-EG
Galvannealed: Steel grade name-GA
Extragal®: Steel grade name-GI
Zagnelis®: Steel grade name+ZM
Show all |
|
|
|
|
|
|
|
|
|
|
---|---|---|---|---|---|---|---|---|---|---|
ArcelorMittal name | Generic name | Direction | Yield stress Rp0.2 (MPa) | Tensile strength Rm (MPa) | Type 1 Min. A50mm (%) | Type 2 Min. A80mm (%) | Type 3 Min. A50mm (%) | Min. r0-20 | Min. rm-20 | n10-20/Ag |
CR210LA | CR210LA | RD | 210 - 300 | 310 - 410 | 30 | 29 | 31 | 1 | 1.1 | 0.15 |
CR240LA | CR240LA | RD | 240 - 320 | 320 - 430 | 28 | 27 | 25 | 0.14 | ||
CR270LA | CR270LA | RD | 270 - 350 | 350 - 460 | 26 | 25 | 27 | 0.13 | ||
CR300LA | CR300LA | RD | 300 - 380 | 380 - 490 | 24 | 23 | 25 | 0.12 | ||
CR340LA | CR340LA | RD | 340 - 430 | 410 - 530 | 22 | 21 | 23 | 0.10 | ||
CR380LA | CR380LA | RD | 380 - 470 | 450 - 570 | 20 | 19 | 20 | |||
CR420LA | CR420LA | RD | 420 - 520 | 480 - 600 | 18 | 17 | 18 | |||
CR460LA | CR460LA | RD | 460 - 580 | 520 - 680 | 15 | 15 | 16 | |||
CR500LA | CR500LA | RD | 500 - 620 | 560 - 740 | 13 | 13 | 14 | |||
CR550LA | CR550LA | RD | 550 - 670 | 600 - 780 | 11 | 11 | 12 |
Show all |
|
|
|
|
|
|
|
|
|
|
|
---|---|---|---|---|---|---|---|---|---|---|---|
ArcelorMittal name | Generic name | Direction | Yield stress Rp0.2 (MPa) | Tensile strength Rm (MPa) | Min. A(%) | Type 1 Min. A50mm (%) | Type 2 Min. A80mm (%) | Type 3 Min. A50mm (%) | Min. r0-20 | Min. rm-20 | n10-20/Ag |
HR240LA | HR240LA | RD | 240 - 340 | 320 - 430 | 31 | 28 | 27 | 29 | 0.14 | ||
HR270LA | HR270LA | RD | 270 - 370 | 350 - 460 | 29 | 26 | 25 | 27 | 0.13 | ||
HR300LA | HR300LA | RD | 300 - 400 | 380 - 500 | 28 | 25 | 24 | 26 | 0.12 | ||
HR340LA | HR340LA | RD | 340 - 440 | 420 - 540 | 26 | 23 | 22 | 24 | 0.10 | ||
HR380LA | HR380LA | RD | 380 - 480 | 450 - 570 | 24 | 21 | 20 | 22 | |||
HR420LA | HR420LA | RD | 420 - 520 | 480 - 600 | 22 | 18 | 18 | 19 | |||
HR460LA | HR460LA | RD | 460 - 560 | 520 - 640 | 20 | 16 | 16 | 17 | |||
HR500LA | HR500LA | RD | 500 - 620 | 560 - 700 | 17 | 14 | 14 | 15 | |||
HR550LA | HR550LA | RD | 550 - 670 | 610 - 750 | 16 | 12 | 12 | 13 | |||
HR600LA | HR600LA | RD | 600 - 730 | 650 - 800 | 15 | 11 | 11 | 12 | |||
HR650LA | HR650LA | RD | 650 - 800 | 700 - 880 | 14 | 11 | 11 | 12 | |||
HR700LA | HR700LA | RD | 700 - 850 | 750 - 950 | 13 | 10 | 10 | 11 |
A80mm %: Percentage elongation after fracture using a specimen with gauge length L0 = 80 mm (ISO 6892-1 type 2 (EN20x80))
A50mm %: Percentage elongation after fracture using a specimen with gauge length L0 = 50 mm (ISO 6892-1 type 1 (ASTM12.5x50) or type 3 (JIS25x50)
A%: Percentage elongation after fracture using a proportional specimen with L0 = 5.65 (So)1/2
Ag %: Percentage plastic extension at maximum force
BH2: Increase in yield strength between a reference condition after a 2% plastic pre-strain and the condition obtained after heat treatment (170°C-20minutes)
Since HSLA steels can exhibit plateauing phenomena during the transition between the elastic and plastic stages, it has been agreed that only the lower value (ReL) of the variations in Re should be taken into account in the plateau zone.
Microstructure of cold-rolled HSLA 340 steel
Show all |
|
|
|
|
|
|
|
|
|
|
---|---|---|---|---|---|---|---|---|---|---|
ArcelorMittal name | Generic name | Max. C (%) | Max. Si (%) | Max. Mn (%) | Max. P (%) | Max. S (%) | Min. Al (%) | Max. Ti (%) | Max. Nb (%) | Max. Cu (%) |
CR210LA | CR210LA | 0.1 | 0.5 | 1.0 | 0.08 | 0.03 | ≥ 0.015 | 0.15 | 0.1 | 0.2 |
CR240LA | CR240LA | 0.1 | 0.5 | 1.0 | 0.03 | 0.025 | ≥ 0.015 | 0.15 | 0.09 | 0.2 |
CR270LA | CR270LA | 0.12 | 0.5 | 1.0 | 0.03 | 0.025 | ≥ 0.015 | 0.15 | 0.09 | 0.2 |
CR300LA | CR300LA | 0.12 | 0.5 | 1.4 | 0.04 | 0.025 | ≥ 0.015 | 0.15 | 0.09 | 0.2 |
CR340LA | CR340LA | 0.12 | 0.5 | 1.5 | 0.04 | 0.025 | ≥ 0.015 | 0.15 | 0.09 | 0.2 |
CR380LA | CR380LA | 0.12 | 0.5 | 1.6 | 0.04 | 0.025 | ≥ 0.015 | 0.15 | 0.09 | 0.2 |
CR420LA | CR420LA | 0.12 | 0.5 | 1.7 | 0.03 | 0.025 | ≥ 0.015 | 0.15 | 0.09 | 0.2 |
CR460LA | CR460LA | 0.15 | 0.6 | 1.7 | 0.03 | 0.025 | ≥ 0.015 | 0.15 | 0.10 | 0.2 |
CR500LA | CR500LA | 0.14 | 0.6 | 1.7 | 0.03 | 0.025 | ≥ 0.015 | 0.15 | 0.10 | 0.2 |
CR550LA | CR550LA | 0.14 | 0.6 | 1.8 | 0.03 | 0.025 | ≥ 0.015 | 0.15 | 0.10 | 0.2 |
Show all |
|
|
|
|
|
|
|
|
|
|
---|---|---|---|---|---|---|---|---|---|---|
ArcelorMittal name | Generic name | Max. C (%) | Max. Si (%) | Max. Mn (%) | Max. P (%) | Max. S (%) | Min. Al (%) | Max. Ti (%) | Max. Nb (%) | Max. Cu (%) |
HR240LA | HR240LA | 0.1 | 0.5 | 0.7 | 0.03 | 0.03 | ≥ 0.015 | 0.15 | 0.05 | 0.2 |
HR270LA | HR270LA | 0.12 | 0.5 | 1.0 | 0.03 | 0.03 | ≥ 0.015 | 0.15 | 0.05 | 0.2 |
HR300LA | HR300LA | 0.12 | 0.5 | 1.3 | 0.03 | 0.025 | ≥ 0.015 | 0.15 | 0.1 | 0.2 |
HR340LA | HR340LA | 0.12 | 0.5 | 1.5 | 0.03 | 0.025 | ≥ 0.015 | 0.15 | 0.1 | 0.2 |
HR380LA | HR380LA | 0.12 | 0.5 | 1.5 | 0.03 | 0.025 | ≥ 0.015 | 0.15 | 0.1 | 0.2 |
HR420LA | HR420LA | 0.12 | 0.5 | 1.6 | 0.03 | 0.025 | ≥ 0.015 | 0.15 | 0.1 | 0.2 |
HR460LA | HR460LA | 0.12 | 0.5 | 1.7 | 0.03 | 0.025 | ≥ 0.015 | 0.15 | 0.1 | 0.2 |
HR500LA | HR500LA | 0.12 | 0.5 | 1.7 | 0.03 | 0.025 | ≥ 0.015 | 0.15 | 0.1 | 0.2 |
HR550LA | HR550LA | 0.12 | 0.6 | 1.8 | 0.03 | 0.025 | ≥ 0.015 | 0.15 | 0.1 | 0.2 |
HR600LA | HR600LA | 0.12 | 0.6 | 2.0 | 0.03 | 0.025 | ≥ 0.015 | 0.2 | 0.1 | 0.2 |
HR650LA | HR650LA | 0.12 | 0.6 | 2.1 | 0.03 | 0.025 | ≥ 0.015 | 0.2 | 0.1 | 0.2 |
HR700LA | HR700LA | 0.12 | 0.6 | 2.1 | 0.03 | 0.025 | ≥ 0.015 | 0.15 | 0.1 | 0.2 |
Under development Customer trials Commercial unexposed only Commercial exposed and unexposed
Show all |
|
|
|
|
|
|
|
---|---|---|---|---|---|---|---|
ArcelorMittal name | Generic name | Uncoated (-UNC) | Extragal® (-GI) | Galvannealed (-GA) | Zagnelis® Protect (-ZMP) | Zagnelis® Surface (-ZMS) | Electrogalvanized (-EG) |
CR210LA | CR210LA | ||||||
CR240LA | CR240LA | ||||||
CR270LA | CR270LA | ||||||
CR300LA | CR300LA | ||||||
CR340LA | CR340LA | ||||||
CR380LA | CR380LA | ||||||
CR420LA | CR420LA | ||||||
CR460LA | CR460LA | ||||||
CR500LA | CR500LA | ||||||
CR550LA | CR550LA | ||||||
HR240LA | HR240LA | ||||||
HR270LA | HR270LA | ||||||
HR300LA | HR300LA | ||||||
HR340LA | HR340LA | ||||||
HR380LA | HR380LA | ||||||
HR420LA | HR420LA | ||||||
HR460LA | HR460LA | ||||||
HR500LA | HR500LA | ||||||
HR550LA | HR550LA | ||||||
HR600LA | HR600LA | ||||||
HR650LA | HR650LA | ||||||
HR700LA | HR700LA |
Show all |
|
|
|
|
|
|
|
---|---|---|---|---|---|---|---|
ArcelorMittal name | Generic name | Uncoated (-UNC) | Extragal® (-GI) | Galvannealed (-GA) | Zagnelis® Protect (-ZMP) | Zagnelis® Surface (-ZMS) | Electrogalvanized (-EG) |
CR210LA | CR210LA | ||||||
CR240LA | CR240LA | ||||||
CR270LA | CR270LA | ||||||
CR300LA | CR300LA | ||||||
CR340LA | CR340LA | ||||||
CR380LA | CR380LA | ||||||
CR420LA | CR420LA | ||||||
CR460LA | CR460LA | ||||||
CR500LA | CR500LA | ||||||
CR550LA | CR550LA | ||||||
HR240LA | HR240LA | ||||||
HR270LA | HR270LA | ||||||
HR300LA | HR300LA | ||||||
HR340LA | HR340LA | ||||||
HR380LA | HR380LA | ||||||
HR420LA | HR420LA | ||||||
HR460LA | HR460LA | ||||||
HR500LA | HR500LA | ||||||
HR550LA | HR550LA | ||||||
HR600LA | HR600LA | ||||||
HR650LA | HR650LA | ||||||
HR700LA | HR700LA |
Show all |
|
|
|
|
---|---|---|---|---|
ArcelorMittal name | Generic name | Uncoated (-UNC) | Extragal® (-GI) | Galvannealed (-GA) |
CR210LA | CR210LA | |||
CR240LA | CR240LA | |||
CR270LA | CR270LA | |||
CR300LA | CR300LA | |||
CR340LA | CR340LA | |||
CR380LA | CR380LA | |||
CR420LA | CR420LA | |||
CR460LA | CR460LA | |||
CR500LA | CR500LA | |||
CR550LA | CR550LA | |||
HR240LA | HR240LA | |||
HR270LA | HR270LA | |||
HR300LA | HR300LA | |||
HR340LA | HR340LA | |||
HR380LA | HR380LA | |||
HR420LA | HR420LA | |||
HR460LA | HR460LA | |||
HR500LA | HR500LA | |||
HR550LA | HR550LA | |||
HR600LA | HR600LA | |||
HR650LA | HR650LA | |||
HR700LA | HR700LA |
Show all |
|
|
|
|
---|---|---|---|---|
ArcelorMittal name | Generic name | Uncoated (-UNC) | Extragal® (-GI) | Galvannealed (-GA) |
CR210LA | CR210LA | |||
CR240LA | CR240LA | |||
CR270LA | CR270LA | |||
CR300LA | CR300LA | |||
CR340LA | CR340LA | |||
CR380LA | CR380LA | |||
CR420LA | CR420LA | |||
CR460LA | CR460LA | |||
CR500LA | CR500LA | |||
CR550LA | CR550LA | |||
HR240LA | HR240LA | |||
HR270LA | HR270LA | |||
HR300LA | HR300LA | |||
HR340LA | HR340LA | |||
HR380LA | HR380LA | |||
HR420LA | HR420LA | |||
HR460LA | HR460LA | |||
HR500LA | HR500LA | |||
HR550LA | HR550LA | |||
HR600LA | HR600LA | |||
HR650LA | HR650LA | |||
HR700LA | HR700LA |
Show all |
|
|
|
---|---|---|---|
ArcelorMittal name | Generic name | Uncoated (-UNC) | Electrogalvanized (-EG) |
CR210LA | CR210LA | ||
CR240LA | CR240LA | ||
CR270LA | CR270LA | ||
CR300LA | CR300LA | ||
CR340LA | CR340LA | ||
CR380LA | CR380LA | ||
CR420LA | CR420LA | ||
CR460LA | CR460LA | ||
CR500LA | CR500LA | ||
CR550LA | CR550LA | ||
HR240LA | HR240LA | ||
HR270LA | HR270LA | ||
HR300LA | HR300LA | ||
HR340LA | HR340LA | ||
HR380LA | HR380LA | ||
HR420LA | HR420LA | ||
HR460LA | HR460LA | ||
HR500LA | HR500LA | ||
HR550LA | HR550LA | ||
HR600LA | HR600LA | ||
HR650LA | HR650LA | ||
HR700LA | HR700LA |
Show all |
|
|
|
|
---|---|---|---|---|
ArcelorMittal name | Generic name | Uncoated (-UNC) | Extragal® (-GI) | Galvannealed (-GA) |
CR210LA | CR210LA | |||
CR240LA | CR240LA | |||
CR270LA | CR270LA | |||
CR300LA | CR300LA | |||
CR340LA | CR340LA | |||
CR380LA | CR380LA | |||
CR420LA | CR420LA | |||
CR460LA | CR460LA | |||
CR500LA | CR500LA | |||
CR550LA | CR550LA | |||
HR240LA | HR240LA | |||
HR270LA | HR270LA | |||
HR300LA | HR300LA | |||
HR340LA | HR340LA | |||
HR380LA | HR380LA | |||
HR420LA | HR420LA | |||
HR460LA | HR460LA | |||
HR500LA | HR500LA | |||
HR550LA | HR550LA | |||
HR600LA | HR600LA | |||
HR650LA | HR650LA | |||
HR700LA | HR700LA |
Under development
Customer trials
Commercial unexposed only
Commercial exposed and unexposed
Please contact us regarding the availability of additional HSLA products.
Drawability declines progressively with increasing yield strength.
Forming limit curves can be used to define the limits within which a material can be deformed without necking for different deformation paths.
Example of forming limit curves calculated for cold-rolled HSLA family of steels (thickness: 1.0 mm) (ArcelorMittal model for Europe)
Example of forming limit curves calculated for cold-rolled HSLA family of steels (thickness: 1.0 mm) (Keeler model for North America)
Example of forming limit curves calculated for hot-rolled HSLA family of steels (thickness: 2.5 mm) (ArcelorMittal model for Europe)
Example of forming limit curves calculated for hot-rolled HSLA family of steels (thickness: 2.5 mm) (Keeler model for North America)
Please contact us for additional forming data for steels in the HSLA range with particular thicknesses and coatings.
Spot weldability is determined in accordance with the ISO 18278-2 method.
Show all |
|
|
|
|
|
---|---|---|---|---|---|
ArcelorMittal name | Thickness (mm) | Nugget diameter (mm) | Pure tensile (kN) | Weld diameter (mm) | Tensile-shear (kN) |
CR240LA | 1.5 | 7.11 | 12.12 | 6.99 | 14.11 |
CR420LA | 1.5 | 7.12 | 12.55 | 6.93 | 15.74 |
CR460LA | 1.5 | 6.88 | 11 | 7.35 | 18.09 |
Show all |
|
|
|
|
|
---|---|---|---|---|---|
ArcelorMittal name | Thickness (mm) | Nugget diameter (mm) | Pure tensile (kN) | Weld diameter (mm) | Tensile-shear (kN) |
HR300LA | 2 | 7.06 | 15.08 | 6.6 | 18.44 |
HR340LA | 2 | 6.95 | 16.59 | 7.2 | 21.37 |
HR550LA | 2 | 7.02 | 16.46 | 6.9 | 27.18 |
HSLA steels can be readily welded regardless of the welding process.
Based on its experience (characterising its products), ArcelorMittal is able to provide technical assistance in adjusting spot and arc welding parameters of any steel in the HSLA range.
HSLA steels offer attractive fatigue strength properties.
Examples of Wöhler curves for a variety of HSLA steels are given in the graph below. They are expressed in terms of maximum stress versus number of cycles to failure. They are calculated for two loading ratios: tension-tension R=0.1 and tension-compression R=-1.
Because of their high endurance limits, these steels are particularly well suited to parts subject to fatigue loading. To restore the base metal endurance limit adjacent to welds in areas subjected to severe cyclic loading, a post-weld treatment such as TIG fusion, hammering, shot-peening or grinding should be applied to the toe of the weld runs.
ArcelorMittal is able to provide comprehensive database covering fatigue performance of steels in its HSLA range.